4.6 Article

Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin

Journal

DENTAL MATERIALS
Volume 25, Issue 10, Pages 1230-1239

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2009.05.001

Keywords

Biomimetics; Phosphate esters; Dentin adhesive; Remineralization; Intrafibrillar; Interfibrillar

Funding

  1. National Institute of Dental and Craniofacial Research [R21 DE019213-01]

Ask authors/readers for more resources

Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: (I) XP Bond, an etch-and-rinse adhesive using moist bonding; (II) XP Bond using dry bonding; (III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization. media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2-4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available