4.6 Article

Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA

Journal

DENTAL MATERIALS
Volume 25, Issue 9, Pages 1082-1089

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2009.01.106

Keywords

Dimethacrylates; Polymer networks; Structural heterogeneity; Network formation; Mechanical properties; Atomic force microscopy; X-Ray powder diffraction

Ask authors/readers for more resources

Objectives. In this work the influence of structural heterogeneity of poly(dimethacrylate)s on mechanical properties was investigated. Rigid aromatic dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and flexible aliphatic urethane dimethacrylate (UDMA) have been chosen for room-temperature homopolymerizations and copolymerizations induced by a camphorquinone/N,N-dimethylaminoethyl methacrylate photoinitiating system. Methods. The following mechanical properties of poly(dimethacrylate)s were investigated: flexural modulus, flexural strength, impact strength and hardness. Atomic force microscopy (AFM) and X-ray powder diffraction (XRPD) were used to describe the morphology of polymer networks. Results. AFM observations showed that the heterogeneity of networks is spatially organized due to the formation of microgels and their agglomeration. Observed agglomerates are unidirectionally oriented, parallel to the direction of polymerization shrinkage. Of all the investigated mechanical properties of poly(dimethacrylate)s, the impact resistance appeared to be the least. The origin of this brittleness could be the presence of heterogeneities which were quantitatively characterized by means of XRPD. The impact resistance was shown to be related to the size of network heterogeneities which is probably influenced by intermolecular interactions, such as hydrogen bonding. Significance. Differences in monomer structure resulted in significantly different morphology and physical properties of the polymer networks which had been studied. The size and shape of heterogeneities affected the final mechanical properties of the polymers, especially impact resistance. In addition, the combined application of XRPD and AFM techniques can be a successful tool in the analysis of the dimethacrylate network morphology, and finally, in investigations on methacrylate-based dental materials. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available