4.5 Article

CCE IV: El Nino-related zooplankton variability in the southern California Current System

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2018.07.015

Keywords

El Nino; ENSO variability; California Current System; Mesozooplankton

Categories

Funding

  1. National Science Foundation Graduate Research

Ask authors/readers for more resources

We analyzed seven El Nino events (springs 1958-59, 1983, 1992-93, 1998, 2003, 2010, and 2016) and the 2014-15 Pacific Warm Anomaly (spring 2015) for their impacts on zooplankton biomass and community composition in the southern sector of the California Current System (CCS). Although total mesozooplankton carbon biomass was only modestly affected during El Nino springs, community composition changed substantially. Carbon biomass of five major zooplankton taxa correlated negatively with San Diego sea level anomaly (SDSLA), a regional metric of El Nino physical impacts in the CCS. Additional taxa were negatively related to SDSLA via a time-lagged response reflected in an autoregressive-1 (AR-1) model. All five SDSLA-correlated taxa decreased in carbon biomass during most El Nino years compared to the surrounding years; the exception was the mild event of 2003. Principal Component Analysis revealed coherent species-level responses to El Nino within the euphausiids, copepods, and hyperiid amphipods. Percent similarity index (PSI) comparisons showed pronounced changes in the compositions of euphausiid and, to a lesser extent, calanoid copepod communities during El Nino. By grouping El Ninos into Eastern Pacific (EP) versus Central Pacific (CP) events based on their expressions along the equator, we found that CCS zooplankton assemblages showed a tendency toward greater changes in species composition during EP than CP El Ninos, although we had low statistical power for these comparisons. Several species showed consistent biomass changes across La Nina events as well, generally opposite in sign to El Nino responses, but overall community composition showed minimal change during La Nina. Carbon biomass and community composition returned to pre-Nino levels within 1-2 years following almost every event, suggesting high resilience of southern CCS zooplankton to El Nino perturbations to date.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available