4.7 Article

Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications

Journal

DALTON TRANSACTIONS
Volume 43, Issue 45, Pages 17034-17043

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4dt01831a

Keywords

-

Funding

  1. UGC [F.2-61/98 (SA-I)]

Ask authors/readers for more resources

Herein, we have demonstrated the high yield facile growth of Al2O3 nanowires of uniform morphology with different polymorph phases (e.g. gamma, delta and theta) via a hydrothermal method with varying calcination temperatures. The synthesized theta-Al2O3 nanowires were well characterized by XRD, FTIR, SEM/EDAX, AFM and HRTEM techniques. Microstructural analysis confirmed that the dimensions of the individual theta-Al2O3 nanowires are approximately in the ranges 5-20 nm in width and 40-150 nm in length, and the aspect ratio is up to 20. AFM results evidenced the uniform distribution of the nanowires with controlled morphology. Furthermore, UV-vis spectroscopic data reveal that the estimated optical band gap of the theta-Al2O3 nanowires was similar to 5.16 eV. The photoluminescence spectrum exhibits blue emission upon excitation at a wavelength of 252 nm. Time-resolved spectroscopy demonstrates that these nanowires illustrate a decay time of similar to 2.23 nanoseconds. The obtained photoluminescence results with a decay time of nanoseconds suggest that the theta-Al2O3 phase could be an exceptional choice for next generation fast optical sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available