4.7 Article

Hemicryptophane-assisted electron transfer: a structural and electronic study

Journal

DALTON TRANSACTIONS
Volume 42, Issue 5, Pages 1530-1535

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2dt31530k

Keywords

-

Ask authors/readers for more resources

Three copper(II)@hemicryptophane complexes with various cavity sizes and shapes, Cu(II)@1, Cu(II)@2 and Cu(II)@3, were synthesized and characterized by near-IR/vis and EPR spectroscopies. The spectroscopic data are consistent with the presence of a trigonal-bipyramidal geometry of the N4Cu center dot H2O core, in accord with the energy-minimized structures obtained from DFT calculations. Cyclic voltammetry studies in CH2Cl2 showed irreversible redox processes, whereas electrolysis coulometry indicated that Cu(II)/Cu(I) complexes could be interconverted. Electrochemistry data of the complexes stress the crucial role of the cage structure of the hemicryptophane in the thermodynamics of the electron transfer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available