4.8 Article

Graphene Edges and Beyond: Temperature-Driven Structures and Electromagnetic Properties

Journal

ACS NANO
Volume 9, Issue 5, Pages 4669-4674

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.5b02617

Keywords

-

Funding

  1. NRF [2010-0020414, 2012K1A3A7A03057505]
  2. KISTI [KSC-2014-C3-020]

Ask authors/readers for more resources

The atomic configuration of graphene edges significantly influences the various properties of graphene nanostructures, and realistic device fabrication requires precise engineering of graphene edges. However, the imaging and analysis of the intrinsic nature of graphene edges can be illusive due to contamination problems and measurement-induced structural changes to graphene edges. In this issue of ACS Nano, He et al. report an in situ heating experiment in aberration-corrected transmission electron microscopy to elucidate the temperature dependence of graphene edge termination at the atomic scale. They revealed that graphene edges predominantly have zigzag terminations below 400 degrees C, while above 600 degrees C, the edges are dominated by armchair and reconstructed zigzag edges. This report brings us one step closer to the true nature of graphene edges. In this Perspective, we outline the present understanding, issues, and future challenges faced in the field of graphene-edge-based nanodevices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available