4.7 Article

Copper(II) complexes incorporating poly/perfluorinated alkoxyaluminate-type weakly coordinating anions: Syntheses, characterization and catalytic application in stereoselective olefin aziridination

Journal

DALTON TRANSACTIONS
Volume 40, Issue 21, Pages 5746-5754

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1dt10280j

Keywords

-

Funding

  1. Universitat Bayern e.V.
  2. DAAD
  3. International Graduate School of Science and Engineering (IGSSE) of Technische Universitat Munchen

Ask authors/readers for more resources

The synthesis and characterization of a series of cationic copper(II) complexes of the type [Cu(NCR)(6)][Al(OC(CF(3))(2)R')(4)](2) (R = CH(3), Ph; R' = CF(3), Ph, PhCH(3)), incorporating poly/perfluoronated alkoxyaluminates as weakly coordinating anions (WCAs) is presented. Aziridination of various olefins, such as the unreactive olefins e. g. ethylhex-2-enoate and 1-decene, with N-tosyliminophenyliodinane catalyzed by [Cu(NCR) (6)][Al(OC(CF(3)) (2)R') (4)] (2) affords very good yields (up to 96%) and high TOFs (up to 5000 h(-1)) under mild conditions. Using disubstituted olefins as substrates, high stereoselectivities are obtained at room temperature. The to date highest cis : trans ratio (98 : 2) of the obtained aziridines is achieved for cis-stilbene in good yield (85%) as well as promising TOF (> 2000 h(-1)). The investigation of the solvent effect on yield and selectivity reveals that for certain oleophilic substrates (1-decene), less polar solvents, such as dichloromethane are a better choice than acetonitrile, which is commonly considered as the best solvent for olefin aziridination. Accordingly, a mechanism involving a paramagnetic copper nitrene intermediate with both concerted and stepwise pathways is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available