4.7 Article

Surface morphologies, electronic structures, and Kondo effect of lanthanide(III)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices

Journal

DALTON TRANSACTIONS
Volume 39, Issue 20, Pages 4708-4723

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b926121d

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology, Japan [20225003, 448]
  2. National Institute of Information and Communications Technology of Japan

Ask authors/readers for more resources

The crystal structures of double-decker single-molecule magnets (SMMs) LnPc(2) (Ln = Tb(III) and Dy(III); Pc = phthalocyanine) and non-SMM YPc2 were determined by using single crystal X-ray diffraction analysis. The compounds are isomorphous to each other. The compounds have metal-centers (M3+ = Tb, Dy, and Y) sandwiched by two Pc ligands via eight isoindole-nitrogen atoms in a square-antiprism fashion. The twist angle between the two Pc ligands is 41.4 degrees. Scanning tunneling microscopy (STM) was used to investigate the compounds adsorbed on a Au(111) surface, deposited by using thermal evaporation in ultra-high vacuum. Both MPc2 with eight-lobes and MPc with four-lobes, which has lost one Pc ligand, were observed. In the scanning tunneling spectroscopy (STS) images of TbPc molecules at 4.8 K, a Kondo peak with a Kondo temperature (T-K) of similar to 250 K was observed near the Fermi level (V = 0 V). On the other hand, DyPc, YPc and MPc2 exhibited no Kondo peak. In order to understand the observed Kondo effect, the energy splitting of sublevels in a crystal field should be taken into consideration. As the next step in our studies on the SMM/Kondo effect in Tb-Pc derivatives, we investigated the electronic transport properties of Ln-Pc molecules as the active layer in top-and bottom-contact thin-film organic field effect transistor (OFETs) devices. Tb-Pc molecule devices exhibit p-type semiconducting properties with a hole mobility (mu(H)) of similar to 10(-4) cm(2) V-1 s(-1). Interestingly, the Dy-Pc based devices exhibited ambipolar semiconducting properties with an electron mobility (mu(e)) of similar to 10(-5) and a hole mobility (mu(H)) of similar to 10(-4) cm(2) V-1 s(-1). This behavior has important implications for the electronic structure of the molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available