4.1 Review

Extrachromosomal Circular DNA in Eukaryotes: Possible Involvement in the Plasticity of Tandem Repeats

Journal

CYTOGENETIC AND GENOME RESEARCH
Volume 124, Issue 3-4, Pages 327-338

Publisher

KARGER
DOI: 10.1159/000218136

Keywords

2D gel electrophoresis; Extrachromosomal circular DNA (eccDNA); Plasticity; Replication; Tandem repeats

Funding

  1. Israel Science Foundation
  2. Israel Cancer Research Fund
  3. Israel Ministry of Health
  4. US Department of Defense

Ask authors/readers for more resources

Extrachromosomal circular DNA (eccDNA) is ubiquitous in eukaryotic organisms, and has been noted for more than 3 decades. eccDNA occurs in normal tissues and in cultured cells, is heterogeneous in size, consists of chromosomal sequences and reflects plasticity of the genome. Two-dimensional (2D) gel electrophoresis has been adapted for the detection and characterization of eccDNA. It shows that most eccDNA consists of chromosomal tandem repeats, both coding genes and satellite DNA and is organized as circular multimers of the repeating sequence. 2D gels were unable to detect dispersed repeats within the population of eccDNA. eccDNA, organized as circular multimers, can be formed de novo in Xenopus egg extracts, in the absence of DNA replication. These findings support a mechanism for the formation of eccDNA that involves intra-chromosomal homologous recombination between tandem repeats and looping-out. Furthermore, eccDNA appears to undergo extrachromosomal replication via a rolling circle mechanism. Hence, the formation of eccDNA from arrays of tandem repeats may cause deletions, and the possible re-integration of rolling-circle replication products could expand these arrays. This review summarizes recent experimental data which characterizes eccDNA in several organisms using 2D gel electrophoresis, and discusses its possible implications on the dynamics of chromosomal tandem repeats. Copyright (C) 2009 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available