4.4 Article

Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

Journal

CURRENT ZOOLOGY
Volume 58, Issue 4, Pages 549-555

Publisher

CURRENT ZOOLOGY
DOI: 10.1093/czoolo/58.4.549

Keywords

Gape-limited predator; Prey choice; Trophic adaptation; Vomeronasal chemoreception

Categories

Ask authors/readers for more resources

Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake. Crotalus viridis viridis (prairie rattlesnake) takes different prey at different life stages, and neonates typically prey on ectotherms, while adults feed almost entirely on small endotherms. We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed, and that this response shifts from one prey type to another as individuals age. To examine if an ontogenetic shift in response to chemical cues occurred, we recorded the rate of tongue flicking for 25 neonate, 20 subadult, and 20 adult (average SVL = 280.9, 552, 789.5 mm, respectively) wild-caught C. v. viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard, Sceloporus undulatus, and house gecko, Hemidactylus frenatus), two endotherms (deer mouse, Peromyscus maniculatus and lab mouse, Mus musculus), and water controls were used. Neonates tongue flicked significantly more to chemical cues of their common prey, S. undulatus, than to all other chemical cues; however, the response to this lizard's chemical cues decreased in adult rattlesnakes. Subadults tongue flicked with a higher rate of tongue flicking to both S. undulatus and P. maniculatus than to all other treatments, and adults tongue flicked significantly more to P. maniculatus than to all other chemical cues. In addition, all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M. musculus and H. frenatus). This shift in chemosensory response correlated with the previously described ontogenetic shifts in C. v. viridis diet. Because many vipers show a similar ontogenetic shift in diet and venom composition, we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid snakes [Current Zoology 58 (4): 549-555, 2012].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available