4.5 Review

Probing Heterotrimeric G Protein Activation: Applications to Biased Ligands

Journal

CURRENT PHARMACEUTICAL DESIGN
Volume 18, Issue 2, Pages 128-144

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138161212799040466

Keywords

GPCRs; G protein; biased agonist; ligand-directed trafficking; ligand efficacy; G protein sensors; signaling pathways

Ask authors/readers for more resources

Cell surface G protein-coupled receptors (GPCRs) drive numerous signaling pathways involved in the regulation of a broad range of physiologic processes. Today, they represent the largest target for modern drugs development with potential application in all clinical fields. Recently, the concept of ligand-directed trafficking has led to a conceptual revolution in pharmacological theory, thus opening new avenues for drug discovery. Accordingly, GPCRs do not function as simple on-off switch but rather as filters capable of selecting the activation of specific signals and thus generating texture responses to ligands, a phenomenon often referred to as ligand-biased signaling. Also, one challenging task today remains optimization of pharmacological assays with increased sensitivity so to better appreciate the inherent texture of ligands. However, considering that a single receptor has pleiotropic signaling properties and that each signal can crosstalk at different levels, biased activity remains thus difficult to evaluate. One strategy to overcome these limitations would be examining the initial steps following receptor activation. Even, if some G protein independent functions have been recently described, heterotrimeric G protein activation remains a general hallmark for all GPCRs families and the first cellular event subsequent to agonist binding to the receptor. Herein, we review the different methodologies classically used or recently developed to monitor G protein activation and discussed them in the context of G protein biased-ligands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available