4.5 Review

Delivery of siRNA to the Target Cell Cytoplasm: Photochemical Internalization Facilitates Endosomal Escape and Improves Silencing Efficiency, In Vitro and In Vivo

Journal

CURRENT PHARMACEUTICAL DESIGN
Volume 14, Issue 34, Pages 3686-3697

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138161208786898789

Keywords

Local delivery; siRNA; endosomal escape; photochemical internalization; EGFR

Funding

  1. Portuguese Foundation: Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BD/17400/2004]
  2. Norwegian Research Foundation
  3. EU
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/17400/2004] Funding Source: FCT

Ask authors/readers for more resources

The prospect of introducing siRNA in a cell, to induce silencing of the corresponding gene, has encouraged research into RNAi-based therapeutics as treatment for human diseases. At present, the siRNA molecules that are in a more advanced stage of clinical evaluation have a common factor: all are delivered locally at the site of the disease. Thus, the state of the art in delivery of siRNA appears to be the local administration. This can certainly be attributed to the characteristics of siRNA molecules, such as relatively high molecular weight, negative charge, and susceptibility to nuclease degradation, which make systemic application as a drug molecule difficult. When focusing on local administration, the main concerns for siRNA delivery can be restricted to the trafficking of siRNA molecules from the vicinity of the target cells, to the intracellular compartment where RNAi takes place, i.e. the cytoplasm. This contribution is focused on the barriers and challenges in trafficking of siRNA upon local delivery. First, an overview is given on the current state of the art for siRNA delivery in clinical trials. Second, recent successful preclinical studies, involving direct and local administration of siRNA, are reviewed. Third, emphasis is given to the endosomal escape. Some of our recent work is presented: the application of photochemical internalization (PCI) to improve the endosomal escape of siRNA lipoplexes in vivo. Finally, concluding remarks focus on the advantages of employing a technique such as PCI to enhance the endosomal escape of siRNA molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available