4.6 Review

Crystallization of amorphous complex oxides: New geometries and new compositions via solid phase epitaxy

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cossms.2018.09.001

Keywords

-

Funding

  1. US National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center [DMR-1720415]

Ask authors/readers for more resources

The crystallization of amorphous complex oxides via solid phase epitaxy enables a wide range of opportunities in the formation of oxide materials in new geometries and with previously inaccessible compositions. Emerging methods for controlling crystallization from the amorphous form arise from recent advances in the deposition of amorphous oxides, the formation and placement of crystalline seeds, and have built on an expanded understanding of the kinetics of nucleation and crystal growth. Key discoveries include methods for the creation of epitaxial layers in perovskite, spinel, and pyrochlore complex oxides. The creation of nanoscale homoepitaxial and heteroepitaxial seeds has the potential to enable new directions in the integration of complex oxides with semiconductors and in devices based on oxygen ion transport. Future opportunities include the creation of complex oxides in morphologies and compositions exhibiting electronic, thermal, and magnetic phenomena enabling a variety of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available