4.6 Review

Stochastic gene expression as a molecular switch for viral latency

Journal

CURRENT OPINION IN MICROBIOLOGY
Volume 12, Issue 4, Pages 460-466

Publisher

CURRENT BIOLOGY LTD
DOI: 10.1016/j.mib.2009.06.016

Keywords

-

Categories

Funding

  1. NIH [K25GM083395]

Ask authors/readers for more resources

Stochastic 'noise' arises from random thermal fluctuations in the concentration of protein, RNA, or other molecules within the cell and is an unavoidable aspect of life at the single-cell level. Evidence is accumulating that this biochemical noise crucially influences cellular auto-regulatory circuits and can 'flip' genetic switches to drive probabilistic fate decisions in bacteria, viruses, cancer, and stem cells. Here, we review how stochastic gene expression in key auto-regulatory proteins can control fate determination between latency and productive replication in both phage-lambda and HIV-1. We highlight important new studies that synthetically manipulate auto-regulatory circuitry and noise, to bias HIV-1's ability to enter proviral latency. We argue that an appreciation of noise in gene expression may shed light on the mystery of animal virus latency and that strategies to manipulate noise may have impact on anti-viral therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available