4.7 Article

The Effect of Body Posture on Brain Glymphatic Transport

Journal

JOURNAL OF NEUROSCIENCE
Volume 35, Issue 31, Pages 11034-11044

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1625-15.2015

Keywords

brain; CSF; posture; sleep; unconsciousness; waste removal

Categories

Funding

  1. FBRI
  2. National Institutes of Health [R01 AG048769]
  3. Department of Anesthesiology, Stony Brook Medicine

Ask authors/readers for more resources

The glymphatic pathway expedites clearance of waste, including soluble amyloid beta(A beta) from the brain. Transport through this pathway is controlled by the brain's arousal level because, during sleep or anesthesia, the brain's interstitial space volume expands (compared with wakefulness), resulting in faster waste removal. Humans, as well as animals, exhibit different body postures during sleep, which may also affect waste removal. Therefore, not only the level of consciousness, but also body posture, might affect CSF-interstitial fluid (ISF) exchange efficiency. We used dynamic-contrast-enhanced MRI and kinetic modeling to quantify CSF-ISF exchange rates in anesthetized rodents' brains in supine, prone, or lateral positions. To validate the MRI data and to assess specifically the influence of body posture on clearance of A beta, we used fluorescence microscopy and radioactive tracers, respectively. The analysis showed that glymphatic transport was most efficient in the lateral position compared with the supine or prone positions. In the prone position, in which the rat's head was in the most upright position (mimicking posture during the awake state), transport was characterized by retention of the tracer, slower clearance, and more CSF efflux along larger caliber cervical vessels. The optical imaging and radiotracer studies confirmed that glymphatic transport and A beta clearance were superior in the lateral and supine positions. We propose that the most popular sleep posture (lateral) has evolved to optimize waste removal during sleep and that posture must be considered in diagnostic imaging procedures developed in the future to assess CSF-ISF transport in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available