4.7 Article

Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling

Journal

JOURNAL OF NEUROSCIENCE
Volume 35, Issue 39, Pages 13463-13474

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1780-15.2015

Keywords

astrocytes; awake in vivo; calcium; neurovascular coupling; tonic blood flow; two photon

Categories

Funding

  1. Canada Institutes of Health Research
  2. Heart and Stroke Foundation of Canada
  3. Canada Research Chairs
  4. Heart and Stroke Foundation Alberta
  5. Alberta Innovates Health Solutions

Ask authors/readers for more resources

According to the current model of neurovascular coupling, blood flow is controlled regionally through phasic changes in the activity of neurons and astrocytes that signal to alter arteriole diameter. Absent in this model, however, is how brain blood flow is tonically regulated independent of regional changes in activity. This is important because a large fraction of brain blood flow is required to maintain basal metabolic needs. Using two-photon fluorescence imaging combined with patch-clamp in acute rat brain slices of sensory-motor cortex, we demonstrate that reducing resting Ca2+ in astrocytes with intracellular BAPTA causes vasoconstriction in adjacent arterioles. BAPTA-induced vasoconstriction was eliminated by a general COX blocker and the effect is mimicked by a COX-1, but not COX-2, antagonist, suggesting that astrocytes provide tonic, steady-state vasodilation by releasing prostaglandin messengers. Tonic vasodilation was insensitive to TTX, as well as a variety of synaptic and extrasynaptic receptor antagonists, indicating that the phenomenon operates largely independent of neural activity. Using in vivo two-photon fluorescence imaging of the barrel cortex in fully awake mice, we reveal that acute COX-1 inhibition reduces resting arteriole diameter but fails to affect vasodilation in response to vibrissae stimulation. Our findings demonstrate that astrocytes provide tonic regulation of arterioles using resting intracellular Ca2+ in a manner that is independent of phasic, neuronal-evoked vasodilation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available