4.5 Article

Meiosis: making a break for it

Journal

CURRENT OPINION IN CELL BIOLOGY
Volume 22, Issue 6, Pages 744-751

Publisher

CURRENT BIOLOGY LTD
DOI: 10.1016/j.ceb.2010.08.016

Keywords

-

Categories

Funding

  1. Magee-Womens Research Institute
  2. NIH [K01AG031296]

Ask authors/readers for more resources

The perpetuation of most eukaryotic species requires differentiation of pluripotent progenitors into egg and sperm and subsequent fusion of these gametes to form a new zygote. Meiosis is a distinguishing feature of gamete formation as it leads to the twofold reduction in chromosome number thereby maintaining ploidy across generations. This process increases offspring diversity through the random segregation of chromosomes and the exchange of genetic material between homologous parental chromosomes, known as meiotic crossover recombination. These exchanges require the establishment of unique and dynamic chromatin configurations that facilitate cohesion, homolog pairing, synapsis, double strand break formation and repair. The precise orchestration of these events is critical for gamete survival as demonstrated by the majority of human aneuploidies that can be traced to defects in the first meiotic division (Hassold T, Hall H, Hunt P: The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 2007, 16 Spec No. 2:R203-R208.). This review will focus on recent advances in our understanding of key meiotic events and how coordination of these events is occurring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available