4.5 Article

Coordination and collective properties of molecular motors: theory

Journal

CURRENT OPINION IN CELL BIOLOGY
Volume 22, Issue 1, Pages 14-20

Publisher

CURRENT BIOLOGY LTD
DOI: 10.1016/j.ceb.2009.12.012

Keywords

-

Categories

Ask authors/readers for more resources

Many cellular processes require molecular motors to produce motion and forces. Single molecule experiments have led to a precise description of how a motor works. Under most physiological conditions, however, molecular motors operate in groups. Interactions between motors yield collective behaviors that cannot be explained only from single molecule properties. The aim of this paper is to review the various theoretical descriptions that explain the emergence of collective effects in molecular motor assemblies. These include bidirectional motion, hysteretic behavior, spontaneous oscillations, and self-organization into dynamical structures. We discuss motors acting on the cytoskeleton both in a prescribed geometry such as in muscles or flagella and in the cytoplasm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available