4.4 Article

Selective inhibition of a multicomponent response can be achieved without cost

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 113, Issue 2, Pages 455-465

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00101.2014

Keywords

inhibition; selective stop; stop-signal task; plasticity; horse-race model

Funding

  1. National Institute of Neurological Disorders and Stroke Grant [NS-074917]

Ask authors/readers for more resources

Behavioral flexibility frequently requires the ability to modify an on-going action. In some situations, optimal performance requires modifying some components of an on-going action without interrupting other components of that action. This form of control has been studied with the selective stop-signal task, in which participants are instructed to abort only one movement of a multicomponent response. Previous studies have shown a transient disruption of the nonaborted component, suggesting limitations in our ability to use selective inhibition. This cost has been attributed to a structural limitation associated with the recruitment of a cortico-basal ganglia pathway that allows for the rapid inhibition of action but operates in a relatively generic manner. Using a model-based approach, we demonstrate that, with a modest amount of training and highly compatible stimulus-response mappings, people can perform a selective-stop task without any cost on the nonaborted component. Prior reports of behavioral costs in selective-stop tasks reflect, at least in part, a sampling bias in the method commonly used to estimate such costs. These results suggest that inhibition can be selectively controlled and present a challenge for models of inhibitory control that posit the operation of generic processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available