4.4 Article

Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 114, Issue 4, Pages 2509-2527

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00989.2014

Keywords

compliance; electromyography; human leg; neuromusculoskeletal modeling; stiffness

Funding

  1. European Research Council (ERC) via the ERC Advanced Grant DEMOVE [267888]
  2. European Seventh Framework Programme FP7-ICT-9 via the H2R Project [60069]
  3. European Seventh Framework Programme FP7-ICT-9 via BIOMOT Project [611695]
  4. European Seventh Framework Programme FP7-ICT-10 via the H2R Project [60069]
  5. European Seventh Framework Programme FP7-ICT-10 via BIOMOT Project [611695]

Ask authors/readers for more resources

This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during over-ground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available