4.2 Article

Interactions of End-functionalized Nanotubes with Lipid Vesicles: Spontaneous Insertion and Nanotube Self-Organization

Journal

CURRENT NANOSCIENCE
Volume 7, Issue 5, Pages 699-715

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/157341311797483772

Keywords

Hybrid vesicle; bicelle; self-assembly; lipids; end-functionalized nanotubes

Funding

  1. NSF

Ask authors/readers for more resources

Via Dissipative Particle Dynamics (DPD) approach, we study the spontaneous insertion of amphiphilic nanotubes into a lipid vesicle, which is immersed in a hydrophilic solvent. Individual lipids are composed of a hydrophilic head group and two hydrophobic tails. Each nanotube encompasses an ABA architecture, with a hydrophobic shaft (B) and two hydrophilic ends (A). To facilitate the selective transport of species through the nanotubes, we introduce hydrophilic tethers at one end of the tube. We show that nanotubes initially located in the host solvent spontaneously penetrate the vesicle's membrane and assume a transmembrane position, with the hydrophilic tethers extending from the surface of the vesicle. Adding nanotubes one at a time after the previous nanotube has been inserted, we characterize the interactions among the nanotubes that have self-assembled into the vesicle's membrane and focus on their clustering within the membrane. We also show that the nanotube insertion and clustering within the vesicle strongly affects the vesicle shape in cases of a sufficiently large number of tubes. Ultimately, these nanotube-lipid systems can be used for creating hybrid controlled release vesicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available