4.6 Review

Assessing Structure, Function and Druggability of Major Inhibitory Neurotransmitter γ-Aminobutyrate Symporter Subtypes

Journal

CURRENT MEDICINAL CHEMISTRY
Volume 17, Issue 20, Pages 2203-2213

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/092986710791299939

Keywords

LeuT structure; Homology modeling; Neuronal and glial GABA transporter subtypes; Pharmacophore; Sodium-GABA complex; Zinc binding site

Funding

  1. [KMOP-1.1.2.-07/1-2008-0002]
  2. [TECH-09-A1-2009-0117]

Ask authors/readers for more resources

Ambient level of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter of the brain is mediated by neuronal and glial GABA transporters (GATs), members of the sodium and chloride ion-dependent solute carrier family. The neuronal GABA transporter subtype (GAT-1) has already been proven to be the target for the antiepileptic drug Tiagabine. However, druggability of glial GAT-2 and GAT-3 is yet to be established. Recent advances in structure elucidation of a bacterial orthologue leucine transporter in complex with different substrates substantiate homology modeling of human GATs (hGATs). These modeling studies can provide mechanistic clues for structure-based prediction of the potential of medicinal chemistry campaigns. A recently identified characteristic structural feature of the occluded conformation of hGATs is that similar extra-and intracellular gates are formed by middle-broken transmembrane helices TM1 and TM6. Binding crevice formed by unwound segments of broken helices facilitates symport of GABA with Na+ ion via fitting of GABA to TM1-bound Na+(1) closely inside. Favored accommodation of substrate inhibitors with high docking score predicts efficient inhibition of the neuronal hGAT-1 if the TM1-TM8 binding prerequisite for GABA was used. Docking, molecular dynamics and transport data indicate, that amino acids participating in substrate binding of the neuronal hGAT-1 and the glial hGAT-2 and hGAT-3 subtypes are different. By contrast, substrate binding crevices of hGAT-2 and hGAT-3 cannot be distinguished, avoiding sensible prediction of efficient selective substrate inhibitors. Glial subtypes might be specifically distinguished by interfering Zn2+ binding in the second extracellular loop of hGAT-3. Formation of the unique ring-like Na+-GABA complex in the occluded binding crevices anticipates family member symporters exploring chemiosmotic energy via reversible chemical coupling of Na+ ion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available