4.3 Article

Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: A pilot study

Journal

CURRENT EYE RESEARCH
Volume 33, Issue 1, Pages 29-43

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/02713680701793930

Keywords

artificial cornea; epithelialization; glucose permeability; hydrogel; interpenetrating polymer network; keratoprosthesis

Categories

Ask authors/readers for more resources

Epithelialization of a keratoprosthesis requires that the implant material be sufficiently permeable to glucose. We have developed a poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) interpenetrating polymer network (IPN) hydrogel that can provide adequate passage of glucose from the aqueous humor to the epithelium in vivo. A series of PEG/PAA IPNs with varying PEG macromonomer molecular weights were synthesized and evaluated through swelling studies to determine their water content and diffusion experiments to assess their permeability to glucose. One of the PEG/PAA hydrogels prepared in this study had a glucose diffusion coefficient nearly identical to that of the human cornea (similar to 2.5 10(-6) cm(2)/sec). When implanted intrastromally in rabbit corneas, this hydrogel was retained and well-tolerated in 9 out of 10 cases for a period of 14 days. The retained hydrogels stayed optically clear and the epithelium remained intact and multilayered, indicating that the material facilitated glucose transport from the aqueous humor to the anterior part of the eye. The results from these experiments indicate that PEG/PAA hydrogels are promising candidates for corneal implant applications such as keratoprostheses and intracorneal lenses, and that the PEG/PAA IPN system in general is useful for creating permeable substrates for ophthalmic and other biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available