4.8 Article

Integration of a Retrograde Signal during Synapse Formation by Glia-Secreted TGF-β Ligand

Journal

CURRENT BIOLOGY
Volume 22, Issue 19, Pages 1831-1838

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2012.07.063

Keywords

-

Funding

  1. National Institutes of Health [R01 MH070000, NS053538]

Ask authors/readers for more resources

Glial cells are crucial regulators of synapse formation, elimination, and plasticity [1, 2]. In vitro studies have begun to identify glial-derived synaptogenic factors [1], but neuron-glia signaling events during synapse formation in vivo remain poorly defined. The coordinated development of pre- and postsynaptic compartments at the Drosophila neuromuscular junction (NMJ) depends on a muscle-secreted retrograde signal, the TGF-beta/BMP Glass bottom boat (Gbb) [3, 4]. Muscle-derived Gbb activates the TGF-beta receptors Wishful thinking (Wit) and either Saxophone (Sax) or Thick veins (Tkv) in motor neurons [3, 4]. This induces phosphorylation of Mad (P-Mad) in motor neurons, its translocation into the nucleus with a co-Smad, and activation of transcriptional programs controlling presynaptic bouton growth [5]. Here we show that NMJ glia release the TGF-beta ligand Maverick (May), which likely activates the muscle activin-type receptor Punt to potently modulate Gbb-dependent retrograde signaling and synaptic growth. Loss of glial May results in strikingly reduced P-Mad at NMJs, decreased Gbb transcription in muscle, and in turn reduced muscle-to-motor neuron retrograde TGF-beta/BMP signaling. We propose that by controlling Gbb release from muscle, glial cells fine tune the ability of motor neurons to extend new synaptic boutons in correlation to muscle growth. Our work identifies a novel glia-derived synaptogenic factor by which glia modulate synapse formation in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available