4.8 Article

Semaphorin and Eph Receptor Signaling Guide a Series of Cell Movements for Ventral Enclosure in C. elegans

Journal

CURRENT BIOLOGY
Volume 22, Issue 1, Pages 1-11

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2011.12.009

Keywords

-

Funding

  1. National Institutes of Health (NIH) [RR00570, NS41397, GM058038]
  2. NIH National Center for Research Resources
  3. Ontario Graduate Scholarship
  4. Canadian Institutes of Health Research [MOP 13207]

Ask authors/readers for more resources

Background: In the last stage of the Caenorhabditis elegans body wall closure, an open pocket in the epidermis is closed by the migration of marginal epidermal P/pocket cells to the ventral midline. The cellular and molecular mechanisms of this closure remain unknown. Results: Cells within the pocket align to form a bridge for migration of contralateral P cell pair P9/10 L,R (and neighboring P cells) to the midline. Bridge formation involves rearrangement of five sister pairs of PLX-2/plexin and VAB-1/Eph receptor expressing plexin band cells, of which three pairs form a scaffold for bridge assembly and two pairs form the bridge. Bridge formation requires VAB-1 kinase-dependent extension of presumptive bridge cells over scaffold cells toward the ventral midline. An unassembled vab-1 null mutant bridge obstructs P cell migration, which is largely overcome by plexin band expression of VAB-1 or VAB-1(delC) (a kinase deletion of VAB-1). VAB-1 also functions redundantly with MAB-20/semaphorin to prevent perdurant gaps between sister plexin band cells that block P cell migration. Conclusions: The Eph receptor mediates cellular extensions required for bridge formation, independently facilitates P cell migration to the midline, and functions redundantly with PLX-2/plexin to prevent gaps in the bridge used for P9/10 cell migration in body wall closure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available