4.8 Article

Two Distinct Repeat Sequences of Nup98 Nucleoporins Characterize Dual Nuclei in the Binucleated Ciliate Tetrahymena

Journal

CURRENT BIOLOGY
Volume 19, Issue 10, Pages 843-847

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2009.03.055

Keywords

-

Funding

  1. Japan Science and Technology Agency
  2. Ministry of Education, Culture, Sports, Science, and Technology (Japan)

Ask authors/readers for more resources

Ciliated protozoa have two functionally distinct nuclei, a micronucleus (MIC) and a macronucleus (MAC) [1]. These two nuclei are distinct in size, transcriptional activity, and division cycle control, proceeding with cycles of DNA replication and nuclear division at different times within the same cell [2, 3]. The structural basis generating functionally distinct nuclei remains unknown. Here, we show that, in Tetrahymena thermophila, the nuclear pore complexes (NPCs) of MIC and MAC are composed of different sets of nucleoporins. Among the 13 nucleoporins identified, Nup98 homologs were of interest because two out of the four homologs were localized exclusively in the MAC and the other two were localized exclusively in the MIC. The two MAC-localizing Nup98s contain repeats of GLFG [4]. In contrast, the two MIC-localizing Nup98s lack the GLFG repeats and instead contain a novel repeat signature of NIFN. Ectopic expression of a chimeric MIC-localizing Nup98 homolog bearing GLFG repeats obstructed the nuclear accumulation of MIC-specific nuclear proteins, and expression of a chimeric MAC-localizing Nup98 homolog bearing NIFN repeats obstructed the nuclear accumulation of MAC-specific nuclear proteins. These results suggest that Nup98s act as a barrier to misdirected localization of nucleus-specific proteins. Our findings provide the first evidence that the NPC contributes to nucleus-selective transport in ciliates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available