4.4 Article

A novel amperometric glucose biosensor based on poly(glycidyl methacrylate-co-(3-thienylmethylmethacrylate))

Journal

CURRENT APPLIED PHYSICS
Volume 13, Issue 4, Pages 725-730

Publisher

ELSEVIER
DOI: 10.1016/j.cap.2012.11.013

Keywords

Amperometric biosensor; Glucose oxidase; Enzyme-modified electrode; Covalent immobilization

Funding

  1. Suleyman Demirel University Research Foundation [2779-D-11]
  2. Gebze Institute of Technology Research Foundation [2009-A7]

Ask authors/readers for more resources

Two novel glucose oxidase (GOx) enzyme electrodes based on the copolymer of glycidyl methacrylate with 3-thienylmethyl methacrylate (poly(GMA-co-MTM)) with and without polypyrrole (PPyr) coating were prepared and employed in the amperometric determination of glucose levels. The effect of PPyr coating on the electrode properties was investigated in detail. Cyclic voltammetry studies showed that electrical conductivity of electrode B with PPyr coating (poly(GMA-co-MTM)/GOx/PPyr) was substantially higher than that of electrode A (poly(GMA-co-MTM)/GOx). On the other hand, electrode A showed better results in terms of sensitivity (10 nA/mM), limit of detection (50.2 mu M), and response time (5 s). Electrodes A and B gave linear responses to the glucose concentrations in the range of 2-20 and 2-14 mM, respectively. The ranges of linearity for both enzyme electrodes are sufficient for the determination of physiological glucose concentrations in human blood. Moreover, PPyr coating of electrode B did not result in further stabilization of the enzyme electrode. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available