4.2 Article

Metabotropic Glutamate Receptor 5 in Down's Syndrome Hippocampus During Development: Increased Expression in Astrocytes

Journal

CURRENT ALZHEIMER RESEARCH
Volume 11, Issue 7, Pages 694-705

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1567205011666140812115423

Keywords

Alzheimer's disease; astrocytes; development; Down's syndrome; hippocampus; mGluR5

Funding

  1. EU FP7 project DEVELAGE [278486]

Ask authors/readers for more resources

Metabotropic glutamate receptor 5 (mGluR5) is highly expressed throughout the forebrain and hippocampus. Several lines of evidence support the role of this receptor in brain development and developmental disorders, as well as in neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the expression pattern of mGluR5 was investigated by immunocytochemistry in the developing hippocampus from patients with Down's syndrome (DS) and in adults with DS and AD. mGluR5 was expressed in developing human hippocampus from the earliest stages tested (9 gestational weeks), with strong expression in the ventricular/subventricular zones. We observed a consistent similar temporal and spatial neuronal pattern of expression in DS hippocampus. However, in DS we detected increased prenatal mGluR5 expression in white matter astrocytes, which persisted postnatally. In addition, in adult DS patients with widespread AD-associated neurodegeneration (DS-AD) increased mGluR5 expression was detected in astrocytes around amyloid plaque. In vitro data confirm the existence of a modulatory crosstalk between amyloid-beta and mGluR5 in human astrocytes. These findings demonstrate a developmental regulation of mGluR5 in human hippocampus and suggest a role for this receptor in astrocytes during early development in DS hippocampus, as well as a potential contribution to the pathogenesis of AD-associated pathology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available