4.7 Article

Identify kinetic features of fibers growing, branching, and bundling in microstructure engineering of crystalline fiber network

Journal

CRYSTENGCOMM
Volume 16, Issue 24, Pages 5402-5408

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ce00096j

Keywords

-

Funding

  1. National Natural Science Foundation of China [11174033, 91127013, 10874015]

Ask authors/readers for more resources

Fibers growing, branching, and bundling are essential for the development of crystalline fiber networks of molecular gels. In this work, for two typical crystalline fiber networks, i.e. the network of spherulitic domains and the interconnected fibers network, related kinetic information is obtained using dynamic rheological measurements and analysis in terms of the Avrami theory. In combination with microstructure characterizations, we establish the correlation of the Avrami derived kinetic parameter not only with the nucleation nature and growth dimensionality of fibers and branches, but also with the fiber bundles induced by fiber-fiber interactions. Our study highlights the advantage of simple dynamic rheological measurements over other spectroscopic methods used in previous studies for providing more kinetic information on fiber-fiber interactions, enabling the Avrami analyses to extract distinct kinetic features not only for fibers growing and branching, but also for bundling in the creation of strong interconnected fibers networks. This work may be helpful for the implementation of precise kinetic control of crystalline fiber network formations for achieving desirable microstructures and rheological properties for advanced applications of gel materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available