4.7 Article

One-step preparation of hollow ZnO core/ZnS shell structures with enhanced photocatalytic properties

Journal

CRYSTENGCOMM
Volume 14, Issue 19, Pages 6295-6305

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ce25591j

Keywords

-

Funding

  1. NNSF of China [21173047, 21073036, 21033003]
  2. National Basic Research Program of China (973 Program) [2007CB613306]

Ask authors/readers for more resources

We report here a facile one-step strategy to prepare hollow ZnO core/ZnS shell structures by microwave irradiation. The growth mechanism of the hollow core/shell structures was investigated in detail. ZnO truncated hexagonal pyramids first form on as-grown precursor flakes and then evolve into ZnO hexagonal twin crystals, which subsequently grow up and dissolve internally. The hollowing progress is firstly controlled by the Kirkendall effect and then undergoes an Ostwald ripening process. Hollow structures and the formation of ZnO/ZnS heterostructure bring enhanced photocatalytic activities to ZnO core/ZnS shell structures. The formed ZnO/ZnS heterostructures also fill the surface defects of ZnO crystals and improve the stability of the photocatalysts by overcoming the photocorrosion effect of a single ZnO photocatalyst under UV light irradiation. Superoxide radicals (O-2(center dot-)) are the key active species in the photocatalytic system of degradation of p-chlorophenol over hollow ZnO core/ZnS shell structures. The photocatalysis process has been discussed and a possible mechanism also has been proposed. This work is helpful to controllably construct other hollow core/shell structures, develop ZnO-based photocatalysts without photocorrosion effect and further study the photocatalytic mechanism of similar systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available