4.7 Article

Facile fabrication and growth mechanism of 3D flower- like Fe3O4 nanostructures and their application as SERS substrates

Journal

CRYSTENGCOMM
Volume 14, Issue 14, Pages 4834-4842

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ce25198a

Keywords

-

Funding

  1. National Natural Science Foundation of China [20873153]
  2. National Basic Research Program of China [2011CB302103]
  3. State Key Laboratories of Transducer Technology [Skt0906]

Ask authors/readers for more resources

A template-free solvothermal combined with precursor thermal transformation method has been developed for the preparation of flower-like Fe3O4 nanostructured hollow microspheres. The reaction mechanism and the self-assembly evolution process were studied, and it was found that the synthetic conditions for the precursor such as reaction time, urea concentration and non-aqueous media are all crucial for the formation of the flower-like hierarchical precursors. The flower-like Fe3O4 microspheres obtained by calcining the precursor in Ar gas exhibit superparamagnetic behavior and show relative high saturation magnetization at room temperature. To endow them with SERS activity, silver coating was conducted by magnetron sputtering. The obtained Fe3O4/Ag hybrid microflowers make a positive influence on the high sensitivity of SERS to 4-pyridinethiol (4-Mpy) and Rhodamine 6G (R6G) molecules when compared with the silver film substrates. More importantly, the detection limit of Fe3O4/Ag hybrid microflowers for R6G dye can reach up to 10(-15) M, which meets the requirements of ultratrace detection of analytes using SERS. Thus, the SERS-active magnetic hybrids prepared in this work may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available