4.7 Article

A practical route towards fabricating GaN nanowire arrays

Journal

CRYSTENGCOMM
Volume 13, Issue 19, Pages 5929-5935

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ce05292f

Keywords

-

Funding

  1. National Natural Science Foundation of China [60776003, 10704052, 50902101, 50902099, 10904106]
  2. National Basic Research Program of China (973 program) [2007CB936700]
  3. Chinese Academy of Sciences [YZ200939]

Ask authors/readers for more resources

GaN nanowire (NW) arrays have been fabricated by the electrodeless photoelectrochemical (PEC) etching method for the first time. Under appropriate conditions, the etching process is just a dislocation-hunted process, in which the etching solution digs down'' along the threading dislocations, resulting in the formation of GaN NWs by preferentially etching away the defective parts of GaN with dislocations and retaining the flawless parts. The NWs have a density of 1 similar to 2 x 10(7) cm(-2), diameters ranging from 150 nm to 500 nm, and corresponding lengths ranging from 10 mu m to 20 mu m. Transmission electron microscopy (TEM) indicates that these GaN NWs possess few dislocations. High resolution X-ray diffraction (HRXRD) and micro-Raman measurements show that these GaN NWs are stress-free. Room temperature cathodoluminescence (CL) measurements show a single near-band-edge emission at 367 nm with a full width at half maximum (FWHM) of 8 nm from the NWs, indicating a high optical quality. Additionally, negative piezoelectric current pluses are generated from the GaN NWs when the conductive atomic force microscope is scanned cross the arrays in contact mode. Such GaN NW arrays are promising building blocks for exploring nanodevices with excellent performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available