4.3 Article

Optimization strategies for single-stage, multi-stage and continuous ADRs

Journal

CRYOGENICS
Volume 62, Issue -, Pages 140-149

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cryogenics.2014.03.012

Keywords

Adiabatic demagnetization refrigeration; Magnetic refrigeration; Magnetocaloric effect

Ask authors/readers for more resources

Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available