4.5 Review

Overview and Application of QTL for Adult Plant Resistance to Leaf Rust and Powdery Mildew in Wheat

Journal

CROP SCIENCE
Volume 54, Issue 5, Pages 1907-1925

Publisher

WILEY
DOI: 10.2135/cropsci2014.02.0162

Keywords

-

Categories

Funding

  1. National Key Basic Research Program of China [2013CB127700]
  2. National Natural Science Foundation of China [31361140367, 31261140370]
  3. Ministry of Science and Technology [2011DFG32990]

Ask authors/readers for more resources

Leaf rust and powdery mildew, caused by Puccinia triticina and Blumeria graminis f. sp. tritici, respectively, are widespread fungal diseases of wheat (Triticum aestivum L.). Development of cultivars with durable resistance is crucially important for global wheat production. This paper reviews the progress of genetic study and application of adult plant resistance (APR) to wheat leaf rust and powdery mildew. Eighty leaf rust and 119 powdery mildew APR quantitative trait loci (QTL) have been reported on 16 and 21 chromosomes, respectively, in over 50 publications during the last 15 yr. More important, we found 11 loci located on chromosomes 1BS, 1BL, 2AL, 2BS (2), 2DL, 4DL, 5BL, 6AL, 7BL, and 7DS showing pleiotropic effects on resistance to leaf rust, stripe rust, and powdery mildew. Among these, QTL on chromosomes 1BL, 4DL, and 7DS also correlate with leaf tip necrosis. Fine mapping and cloning of these QTL will be achieved with the advent of cheaper high-throughput genotyping technologies. Germplasm carrying these potential resistance genes will be useful for developing cultivars with durable multidisease resistance. In addition to its non-NBS-LRR (nucleotide binding site-leucine rich repeat) structure, the senescence-like processes induced by Lr34 could be the reason for durability of resistance; however, more information is needed for a full understanding of the molecular mechanism related to durability. Adult plant resistance genes have been used by CIMMYT for more than 30 yr and have also been transferred to many Chinese wheat varieties through shuttle breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available