4.5 Article

Classification of crops and weeds from digital images: A support vector machine approach

Journal

CROP PROTECTION
Volume 40, Issue -, Pages 98-104

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cropro.2012.04.024

Keywords

Weeds control; Herbicide; Machine vision system; RBF kernel; Stepwise features selection

Categories

Ask authors/readers for more resources

In most agricultural systems, one of the major concerns is to reduce the growth of weeds. In most cases, removal of the weed population in agricultural fields involves the application of chemical herbicides, which has had successes in increasing both crop productivity and quality. However, concerns regarding the environmental and economic impacts of excessive herbicide applications have prompted increasing interests in seeking alternative weed control approaches. An automated machine vision system that can distinguish crops and weeds in digital images can be a potentially cost-effective alternative to reduce the excessive use of herbicides. In other words, instead of applying herbicides uniformly on the field, a real-time system can be used by identifying and spraying only the weeds. This paper investigates the use of a machine-learning algorithm called support vector machine (SVM) for the effective classification of crops and weeds in digital images. Our objective is to evaluate if a satisfactory classification rate can be obtained when SVM is used as the classification model in an automated weed control system. In our experiments, a total of fourteen features that characterize crops and weeds in images were tested to find the optimal combination of features that provides the highest classification rate. Analysis of the results reveals that SVM achieves above 97% accuracy over a set of 224 test images. Importantly, there is no misclassification of crops as weeds and vice versa. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available