4.5 Review

Rice and Butterfly Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review

Journal

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10408436.2014.917368

Keywords

butterfly wing; shark skin; lotus effect; antifouling; rice leaf; low drag

Funding

  1. National Science Foundation, Arlington, VA [CMMI-1000108]

Ask authors/readers for more resources

In this article, a comprehensive overview of the reported rice and butterfly wing effect discovered by the authors is presented with the hope to attract and inspire others in the field. Living nature has inspired researchers for centuries to solve complex engineering challenges with much attention given to unique structures, materials, and surfaces. Such challenges include drag reducing and antifouling surfaces to save energy, lives, and money. Many flora and fauna exhibit low drag and antifouling characteristics, such as shark skin and lotus leaves, due to their hierarchical microstructured morphologies. The authors have reported that rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Fluid drag, anti-biofouling, anti-inorganic fouling, contact angle, and contact angle hysteresis results are presented to understand the role of sample morphology. Conceptual modeling provides design guidance when developing novel low drag and antifouling surfaces for medical, marine, and industrial applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available