4.5 Review

Regulation of Transpiration to Improve Crop Water Use

Journal

CRITICAL REVIEWS IN PLANT SCIENCES
Volume 28, Issue 6, Pages 410-431

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07352680903173175

Keywords

water use efficiency; stomatal transpiration; cuticular transpiration; boundary layer; nighttime transpiration; stomatal movement; stomatal density; water availability; drought; water conservation

Categories

Funding

  1. National Science Foundation [MCB-0424850, IBN-0416773]

Ask authors/readers for more resources

Decreasing fresh water supplies and increasing agricultural drought threaten sustainable worldwide crop production. Consequently, there is a global priority to develop crops with higher water use efficiency (WUE): biomass production or yield per unit of water used. Water use efficiency varies substantially among species and genotypes within a species, and a major effort is now underway to identify the genetic determinants of WUE. Today, it is known that genotypes in primary gene pools exhibit allelic variation for WUE through mechanisms that regulate transpiration, which is the conductance of water through stomata, the cuticle, and the boundary layer. Because of the differential diffusion properties of water and carbon dioxide (CO2) through these pathways, it is feasible that WUE could be improved by decreasing transpiration without a concomitant reduction in CO2 uptake. Since CO2 uptake and transpirational water loss occur predominantly through stomatal pores, it is not surprising that genes involved in stomatal development and stomatal opening/closing impact WUE. Furthermore, loss- and gain-of-function genetic screens have identified genes that regulate transpiration and WUE by yet undetermined mechanisms. This review will discuss the genetic determinants that regulate transpiration and WUE in the context of the modern agricultural goal of improving WUE while sustaining biomass and yield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available