4.6 Review

Targeting the MET gene for the treatment of non-small-cell lung cancer

Journal

CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY
Volume 89, Issue 2, Pages 284-299

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.critrevonc.2013.11.006

Keywords

Hepatocyte growth factor; MET; Kinase inhibitors; Targeted therapies; NSCLC

Ask authors/readers for more resources

Recently, a better understanding of the specific mechanisms of oncogene addiction has led to the development of antitumor strategies aimed at blocking these abnormalities in different malignancies, including lung cancer. These abnormalities trigger constitutive activation of tyrosine kinase receptors (RTKs) involved in fundamental cell mechanisms such as proliferation, survival, differentiation and migration, and consequently the aberrant signaling of RTKs leads to cancer growth and survival. The inhibition of aberrant RTKs and downstream signaling pathways has opened the door to the targeted therapy era. In non-small-cell lung cancer (NSCLC), molecular research has allowed the discrimination of different aberrant RTKs in lung cancer tumorigenesis and progression, and thus the identification of several targetable oncogenic drivers. Following the development of small molecules (gefitinib/erlotinib and crizotinib) able to reversibly inhibit the epidermal growth factor receptor (EGFR) and signaling pathways mediated by anaplastic lymphoma kinase (ALK), respectively, the MET signaling pathway has also been recognized as a potential target. Moreover, according to current knowledge, MET could be considered both as a secondary oncogenic mechanism and as a prognostic factor. Several therapeutic strategies for inhibiting activated hepatocyte growth factor receptor (HGFR) and the subsequent downstream signaling transduction have been improved in order to block tumor growth. This review will focus on the MET pathway and its role in resistance to EGFR TK (tyrosine kinase) inhibitors, the different strategies of its inhibition, and the potential approaches to overcoming acquired resistance. (C) 2013 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available