4.2 Article

Development of Composite Poly(Lactide-co-Glycolide)-Nanodiamond Scaffolds for Bone Cell Growth

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 15, Issue 2, Pages 1060-1069

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2015.9745

Keywords

Diamond Nanoparticles; PLGA; Human MSC; Electrospinning; Nanofibres; Cytocompatibility; Cell Growth

Funding

  1. FP-6 NEST 028861
  2. Grant Agency of the Czech Republic [P108/12/G108]

Ask authors/readers for more resources

There are relatively few nanotechnologies that can produce nanocomposite scaffolds for cell growth. Electrospinning has emerged as the foremost method of producing nanofibrous biomimetic scaffolds for tissue engineering applications. In this study diamond nanoparticles were integrated into a polymer solution to develop a nanocomposite scaffold containing poly(lactide-co-glycolide) (PLGA) loaded with diamond nanoparticles. To investigate the effect of adding diamond nanoparticles to PLGA scaffolds, primary human mesenchymal stem cells (hMSCs) were seeded on the scaffolds. The cytocompatibility results showed that addition of diamond nanoparticles did not impinge upon cell proliferation, nor was there a cytotoxic cellular response after 9 days in culture. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy and confocal microscopy enabled qualitative characterization of the fibres and revealed cell morphology and number. Furthermore, surface roughness was measured to evaluate diamond nanoparticle modifications, and no significant difference was found between the diamond nanocomposite and pure polymer scaffolds. On the other hand, bright spots on phase images performed by atomic force microscopy suggested a higher hardness at certain points on fibers of the PLGA-nanodiamond composites, which was supported by nanoindentation measurements. This study shows that PLGA nanofibers can be reinforced with nanodiamond without adversely affecting cell behaviour, and thus it sets the foundation for future application of these scaffolds in bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available