4.5 Review

Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors

Journal

CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES
Volume 47, Issue 4, Pages 181-195

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10408363.2010.536429

Keywords

Vitamin D receptor; estrogen; IGF-1; pregnancy; kinetics

Funding

  1. NIH [DK054111]

Ask authors/readers for more resources

Optimal intestinal calcium (Ca) absorption is necessary for the protection of bone and the prevention of osteoporosis. Ca absorption can be represented as the sum of a saturable pathway and a non-saturable pathway that is primarily dependent upon luminal Ca concentration. While models have been proposed to describe these transport components, significant gaps still exist in our understanding of these processes. Habitual low intake of Ca up-regulates the saturable transport pathway, a process mediated by increased renal production of 1,25 dihydroxyvitamin D (1,25(OH)(2)D). Consistent with this, low vitamin D status as well as deletion/mutation of the vitamin D receptor (VDR) or 25 hydroxyvitamin D-1 alpha hydroxylase (CYP27B1) genes limit Ca absorption by reducing the saturable pathway. There is some evidence that non-saturable Ca absorption in the ileum is also regulated by vitamin D status, but the mechanism is unclear. Treatment with a number of hormones can regulate Ca absorption in vivo (e.g. parathyroid hormone (PTH), thyroid hormone, growth hormone (GH)/insulin-like growth factor I (IGF-1), estrogen, testosterone). However, some of these actions are indirect (i.e. mediated through the regulation of vitamin D metabolism or signaling), whereas only a few (e.g. estrogen, IGF-1) have been shown to persist in the absence of vitamin D signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available