4.4 Review

Human RECQL5: Guarding the crossroads of DNA replication and transcription and providing backup capability

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/10409238.2013.792770

Keywords

Base excision repair; DNA replication; homologous recombination; RecQ helicases; transcription

Funding

  1. National Institute on Aging, NIH [AG000726-20]

Ask authors/readers for more resources

DNA helicases are ubiquitous enzymes that catalyze unwinding of duplex DNA and function in all metabolic processes in which access to single-stranded DNA is required, including DNA replication, repair, recombination and RNA transcription. RecQ helicases are a conserved family of DNA helicases that display highly specialized and vital roles in the maintenance of genome stability. Mutations in three of the five human RecQ helicases, BLM, WRN and RECQL4 are associated with the genetic disorders Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome that are characterized by chromosomal instability, premature aging and predisposition to cancer. The biological role of human RECQL5 is only partially understood and RECQL5 has not yet been associated with any human disease. Illegitimate recombination and replication stress are hallmarks of human cancers and common instigators for genomic instability and cell death. Recql5 knockout mice are cancer prone and show increased chromosomal instability. Recql5-deficient mouse embryonic fibroblasts are sensitive to camptothecin and display elevated levels of sister chromatid exchanges. Unlike other human RecQ helicases, RECQL5 is recruited to single-stranded DNA breaks and is also proposed to play an essential role in RNA transcription. Here, we review the established roles of RECQL5 at the cross roads of DNA replication, recombination and transcription, and propose that human RECQL5 provides important backup functions in the absence of other DNA helicases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available