4.2 Article

Near-Field Radiative Heat Transfer Between Two SiC Plates With/Without Coated Metal Films

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 15, Issue 4, Pages 3017-3024

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2015.9687

Keywords

Near-Field Radiation; Silicon Carbide; Aluminum Coating; Rytov Theory

Funding

  1. National Natural Science Foundation of China [50906024]

Ask authors/readers for more resources

Near-field radiation is important in many nanotechnological applications, such as thermophotovoltaic system. In this paper, we employ the Rytov theory to calculate the near-field heat transfer between two silicon carbide (SiC) plates at finite vacuum gaps. The result shows that the total energy transfer rate increases with decreasing distance, and a maximum energy transfer rate can be found with respect to frequency. We then analyze the near-field thermal radiation of an aluminum-coated SiC plane in vacuum. The relation among film thickness, gap distance and energy density is given. It shows that the contribution of transverse electric (TE) mode to the energy density vanishes when the film thickness is nearly zero; and the contribution of transverse magnetic (TM) mode increases, but remains finite that can be illustrated by simple Drude model. The spectral density of p state of the thermally stimulated field in the vacuum-Al-SiC structure with fixed film thickness would have more resonance and large value can be obtained when increasing the distance; while the spectral density of p state in the thermally stimulated field in the structure with fixed distance has no apparent difference when varying the film thicknesses. This investigation can be extended for many other basic researches in near-field radiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available