4.6 Article

Polynitroxylated pegylated hemoglobin: A novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice

Journal

CRITICAL CARE MEDICINE
Volume 39, Issue 3, Pages 494-505

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/CCM.0b013e318206b1fa

Keywords

head injury; hemoglobin based oxygen carrier; nitroxide; oxidative stress; nitric oxide; polyethylene glycol; hemorrhagic shock; blast injury; polytrauma; blood substitute; polynitroxylation; superoxide

Funding

  1. U.S. Army [PR054755 W81XWH-06-1-0247]
  2. National Institutes of Health [T32HD040686, NS30318]

Ask authors/readers for more resources

Objective: Resuscitation of hemorrhagic hypotension after traumatic brain injury is challenging. A hemoglobin-based oxygen carrier may offer advantages. The novel therapeutic hemoglobin-based oxygen carrier, polynitroxylated pegylated hemoglobin (PNPH), may represent a neuroprotective hemoglobin-based oxygen carrier for traumatic brain injury resuscitation. Hypotheses: 1) PNPH is a unique non-neurotoxic hemoglobin-based oxygen carrier in neuronal culture and is neuroprotective in in vitro neuronal injury models. 2) Resuscitation with PNPH would require less volume to restore mean arterial blood pressure than lactated Ringer's or Hextend and confer neuroprotection in a mouse model of traumatic brain injury plus hemorrhagic hypotension. Design: Prospective randomized, controlled experimental study. Setting: University center. Measurements and Main Results: In rat primary cortical neuron cultures, control bovine hemoglobin was neurotoxic (lactate dehydrogenase release; 3-[4,5-dimethylthiazol-2-yl-]-2,5-diphenyltetrazolium bromide assay) at concentrations from 12.5 to 0.625 mu M, whereas polyethylene glycol-conjugated hemoglobin showed intermediate toxicity. PNPH was not neurotoxic (p < .05 vs. bovine hemoglobin and polyethylene glycol hemoglobin; all concentrations). PNPH conferred neuroprotection in in vitro neuronal injury (glutamate/glycine exposure and neuronal stretch), as assessed via lactate dehydrogenase and 3-[4,5-dimethylthiazol-2- yl-]-2,5-diphenyltetrazolium bromide (all p < .05 vs. control). C57BL6 mice received controlled cortical impact followed by hemorrhagic hypotension (2 mL/100 g, mean arterial blood pressure similar to 35-40 mm Hg) for 90 min. Mice were resuscitated (mean arterial blood pressure >50 mm Hg for 30 min) with lactated Ringer's, Hextend, or PNPH, and then shed blood was reinfused. Mean arterial blood pressures, resuscitation volumes, blood gasses, glucose, and lactate were recorded. Brain sections at 7 days were examined via hematoxylin and eosin and Fluoro-Jade C (identifying dying neurons) staining in CA1 and CA3 hippocampus. Resuscitation with PNPH or Hextend required less volume than lactated Ringer's (both p < .05). PNPH but not Hextend improved mean arterial blood pressure vs. lactated Ringer's (p < .05). Mice resuscitated with PNPH had fewer Fluoro-Jade C positive neurons in CA1 vs. Hextend and lactated Ringer's, and CA3 vs. Hextend (p < .05). Conclusions: PNPH is a novel neuroprotective hemoglobin-based oxygen carrier in vitro and in vivo that may offer unique advantages for traumatic brain injury resuscitation. (Crit Care Med 2011; 39: 494 -505)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available