4.7 Article

Influence of molybdate species on the tartaric acid/sulphuric acid anodic films grown on AA2024 T3 aerospace alloy

Journal

CORROSION SCIENCE
Volume 51, Issue 9, Pages 2034-2042

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.corsci.2009.05.034

Keywords

Aluminium; Acid solutions; Alloy; EIS; Anodic films

Funding

  1. EPSRC Latest Portfolio Partnership
  2. European Community [NMP3-Cr-2005-011783]
  3. Engineering and Physical Sciences Research Council [EP/D029201/1] Funding Source: researchfish

Ask authors/readers for more resources

AA2024 T3 alloy specimens have been anodised in tartaric acid/sulphuric media and tartaric acid/sulphuric media containing sodium molybdate; molybdate species were added to the anodising bath to enhance further the protection provided by the porous anodic film developed over the macroscopic alloy surface. Morphological characterisation of the anodic films formed in both electrolytes was undertaken using scanning electron and transmission electron microscopies; the chemical compositions of the films were determined by Rutherford backscattering spectroscopy that was complemented by elemental depth profiling using rf-glow discharge optical emission spectrometry. The electrochemical behaviour was evaluated using potentiodynamic polarisations and electrochemical impedance spectroscopy; the corrosion performance was examined after salt spray testing. The porous anodic film morphology was little influenced by the addition of molybdate salt, although thinner films were generated in its presence. Chemical composition of the anodic film was roughly similar; however, addition of sodium molybdate in the anodizing bath resulted in residues of molybdate species in the porous skeleton and improved corrosion resistance measured by electrochemical techniques that was confirmed by salt spray testing. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available