4.2 Article

Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol) Composite Films

Journal

JOURNAL OF NANOMATERIALS
Volume 2015, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2015/908689

Keywords

-

Funding

  1. Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network

Ask authors/readers for more resources

This work concerns a study on the effects of fiber types and content of cellulose nanofiber on mechanical, thermal, and optical properties polyvinyl alcohol (PVA) composites. Two different types of cellulose nanofibers, which are nanofibrillated cellulose (NFC) and bacterial cellulose (BC), were prepared under various mechanical treatment times and then incorporated into the PVA prior to the fabrication of composite films. It was found that tensile modulus of the PVA film increased with nanofibers content at the expense of its percentage elongation value. DSC thermograms indicate that percentage crystallinity of PVA increased after adding 2-4 wt% of the fibers. This contributed to the better mechanical properties of the composites. Tensile toughness values of the PVA/BC nanocomposite films were also superior to those of the PVA/NFC system containing the same fiber loading. SEM images of the composite films reveal that tensile fractured surface of PVA/BC experienced more ductile deformation than the PVA/NFC analogue. The above discrepancies were discussed in the light of differences between the two types of fibers in terms of diameter and their intrinsic properties. Lastly, percentage total visible light transmittance values of the PVA composite films were greater than 90%, regardless of the fiber type and content.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available