4.5 Article

Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3-M11 partition of COI

Journal

CORAL REEFS
Volume 28, Issue 1, Pages 157-165

Publisher

SPRINGER
DOI: 10.1007/s00338-008-0430-3

Keywords

Sponge; Xestospongia muta; Population genetics; Genetic structure; mtDNA; Ocean currents

Funding

  1. NOAA's Undersea Research Center at UNCW [NA 96RU-0260]
  2. NSF's Biological Oceanography Program [OCE-0550468]
  3. Spanish Government [CTM2007-66635]

Ask authors/readers for more resources

In recent years, reports of sponge bleaching, disease, and subsequent mortality have increased alarmingly. Population recovery may depend strongly on colonization capabilities of the affected species. The giant barrel sponge Xestospongia muta is a dominant reef constituent in the Caribbean. However, little is known about its population structure and gene flow. The 5'-end fragment of the mitochondrial gene cytochrome oxidase subunit I is often used to address these kinds of questions, but it presents very low intraspecific nucleotide variability in sponges. In this study, the usefulness of the I3-M11 partition of COI to determine the genetic structure of X. muta was tested for seven populations from Florida, the Bahamas and Belize. A total of 116 sequences of 544 bp were obtained for the I3-M11 partition corresponding to four haplotypes. In order to make a comparison with the 5'-end partition, 10 sequences per haplotype were analyzed for this fragment. The 40 resulting sequences were of 569 bp and corresponded to two haplotypes. The nucleotide diversity of the I3-M11 partition (pi = 0.00386) was higher than that of the 5'-end partition (pi = 0.00058), indicating better resolution at the intraspecific level. Sponges with the most divergent external morphologies (smooth vs. digitate surface) had different haplotypes, while those with the most common external morphology (rough surface) presented a mixture of haplotypes. Pairwise tests for genetic differentiation among geographic locations based on F (ST) values showed significant genetic divergence between most populations, but this genetic differentiation was not due to isolation by distance. While limited larval dispersal may have led to differentiation among some of the populations, the patterns of genetic structure appear to be most strongly related to patterns of ocean currents. Therefore, hydrological features may play a major role in sponge colonization and need to be considered in future plans for management and conservation of these important components of coral reef ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available