4.8 Review

Ruthenium complexes with non-innocent ligands: Electron distribution and implications for catalysis

Journal

COORDINATION CHEMISTRY REVIEWS
Volume 254, Issue 3-4, Pages 309-330

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2009.09.006

Keywords

Ruthenium complexes; Redox-active ligands; Non-innocent ligands; Quinone; Oxidation; Catalysis

Ask authors/readers for more resources

Ruthenium complexes with the non-innocent ligands (NILs) benzoquinone, iminobenzoquinone and benzoquinonediimine and their redox derivatives exhibit intriguing electronic properties. With the proper ligand set the NIL pi* orbitals mix extensively with the ruthenium d pi orbitals resulting in delocalized electron distributions and non-integer oxidation states, and in most of these systems a particular ruthenium oxidation state dominates. This review critically examines the electronic structure of Ru-NIL systems from both an experimental and computational (DFT) perspective. The electron distribution within these complexes can be modulated by altering both the ancillary ligands and the NIL, and in a few cases the resultant electron distributions are exploited for catalysis. The Ru-NIL systems that perform alcohol oxidation and water oxidation catalysis are discussed in detail. The Tanaka catalyst, an anthracene-bridged dinuclear Ru complex, is an intriguing example of a Ru-NIL framework in catalysis. Unlike other known ruthenium water oxidation catalysts, the two Ru atoms remain low valent during the catalytic cycle according to DFT calculations, some experimental evidence, and predictions based on the behavior of the related mononuclear species. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available