4.6 Article

Electromyography-based control of active above-knee prostheses

Journal

CONTROL ENGINEERING PRACTICE
Volume 19, Issue 8, Pages 875-882

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2011.04.017

Keywords

Biomedical system; Impedance control; Medical applications; Neural control

Ask authors/readers for more resources

This paper presents a new electromyography (EMG)-based control approach for above-knee (AK) prostheses, which enables the user to control the prosthesis motion directly with his or her muscle activating neural signals. Furthermore, the unique 'active-reactive' control structure mimics the actuation mechanism of a human biological joint, and thus provides the user an experience similar to that of a biological lower limb in the control process. In the proposed control approach, surface EMG is utilized to provide a non-intrusive interface to the user's central nervous system, through which the muscle-activating signals can be obtained. With the EMG signals as inputs, an 'active-reactive' control algorithm is developed based on the analysis on a simplified musculoskeletal structure of human biological joint. This control algorithm incorporates an 'active' component, which reflects the user's active effort to actuate the joint, and a 'reactive' component, which models the reaction of the joint to the motion as a result of the controllable impedance displayed on the joint. With this unique structure, the controller enables the active control of the joint motion, while at the same time achieves a natural interaction with the environment through the modulation of the joint impedance. The effectiveness of the proposed control approach was demonstrated through a set of free swing experiments, in which the user was able to control the prosthesis to follow arbitrary motion commands, and a set of level walking experiments, in which the user achieved natural walking gait similar to the typical walking gait of healthy subjects. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available