4.6 Article Proceedings Paper

An application of model predictive control to the dynamic economic dispatch of power generation

Journal

CONTROL ENGINEERING PRACTICE
Volume 19, Issue 6, Pages 638-648

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2011.03.001

Keywords

Dynamic economic dispatch; Model predictive control; Convex optimization

Ask authors/readers for more resources

Two formulations exist for the problem of the optimal power dispatch of generators with ramp rate constraints: the optimal control dynamic dispatch (OCDD) formulation based on control system models, and the dynamic economic dispatch (DED) formulation based on optimization. Both are useful for the dispatch problem over a fixed time horizon, and they were treated as equivalent formulations in literature. This paper first shows that the two formulations are in fact different and both formulations suffer from the same technical deficiency of ramp rate violation during the periodic implementation of the optimal solutions. Then a model predictive control (MPC) approach is proposed to overcome such a technical deficiency. Furthermore, it is shown that the MPC solutions, which are based on the OCDD framework, converge to the optimal solution of an extended version of the DED problem and they are robust under certain disturbances and uncertainties. Two standard examples are studied: the first one of a ten-unit system shows the difference between the OCDD and DED, and possible ramp rate violations, and the second one of a six-unit system shows the convergence and robustness of the MPC solutions, and the comparison with OCDD as well. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available