4.5 Article

Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass

Journal

CONTINENTAL SHELF RESEARCH
Volume 50-51, Issue -, Pages 100-116

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.csr.2012.10.008

Keywords

Posidonia oceanica; Seagrass; Wave-induced flow; Energy dissipation factor; Wave-vegetation interactions

Categories

Funding

  1. European Community Sixth Framework Programme through Integrated Infrastructure Initiative Hydralab III [022441-RII3]
  2. Regione Autonoma della Sardegna

Ask authors/readers for more resources

This paper presents results from experiments in a large flume on wave and flow attenuation by a full-scale artificial Posidonia oceanica seagrass meadow in shallow water. Wave height and in-canopy wave-induced flows were reduced by the meadow under all tested regular and irregular wave conditions, and were affected by seagrass density, submergence and distance from the leading edge. The energy of irregular waves was reduced at all components of the spectra, but reduction was greater at the peak spectral frequency. Energy dissipation factors were largest for waves with small orbital amplitudes and at low wave Reynolds numbers. An empirical model, commonly applied to predict friction factors by rough beds, proved applicable to the P. oceanica bed. However at the lowest Reynolds numbers, under irregular waves, the data deviated significantly from the model. In addition, the wave-induced flow dissipation in the lower canopy increased with increasing wave orbital amplitude and increasing density of the mimics. The analysis of the wave-induced flow spectra confirm this trend: the reduction of flow was greatest at the longer period component of the spectra. Finally, we discuss the implications of these findings for sediment dynamics and the role of P. oceanica beds in protecting the shore from erosion. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available